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Chart 1.
A new synthetic approach towards 1-alkoxy-2-aminoimidazolines that uses N-alkoxy-N-(2-aminoethyl)-
2-nitrobenzenesulfonamides as nucleophile reagents for the reaction with isothiocyanates is reported.
Hence, the synthesis of 1-alkoxy-2-aminoimidazolines was performed in high yield with a one-pot
procedure involving thiourea formation, nosyl group removal and spontaneous cyclization (42–77%
overall yield).

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Our continuous effort in the search of new antitrypanosomal
agents potentially useful against Trypanosoma brucei rhodesiense,1–3

the protozoan parasite responsible for the acute form of sleeping
sickness in sub-saharian Africa, led us to envisage the synthesis of
compounds bearing 1-alkoxy-2-aminoimidazolyl groups as poten-
tial prodrugs for the 2-aminoimidazoline cation. We previously
showed that the ip administration of a bis(2-aminoimidazoline)
derivative was able to cure two models of acute infection in mice
that is, T. b. brucei STIB 795 and T. b. rhodesiense STIB900).3 However,
our lead compound (X = NH, Chart 1) could not cure the late stage
disease (i.e., with CNS involvement) probably due to a poor blood
brain barrier (BBB) penetration caused by its dicationic nature.

In fact, this kind of guanidine compounds has very basic nitro-
gen atoms (pKa = 9.9 for our lead compound)4 that are charged at
physiological pH and as such potentially poorly liposoluble, lead-
ing to poor diffusion across the BBB.

Amongst the existing strategies to improve the pharmacokinet-
ics of cationic compounds such as amidines or guanidines, the sub-
stitution of the basic N-atom with hydroxyl (or alkoxy group) or
ll rights reserved.
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ester groups, affording less basic molecules that are not protonated
at physiological pH, has been successfully applied to antimicrobi-
als. In particular, the amidoxime prodrug strategy developed by
Clement 5 and used by the group of Boykin and Tidwell to improve
the oral bioavailability of a series of 2,5-bis(4-amidinophenyl)furan
derivatives is a very promising approach6–9 that proved also useful
for the CNS delivery of the diamidine antitrypanosomal agents
DB844 and DB289.10–12

Encouraged by these data, we considered the preparation of 1-
alkoxy-2-aminoimidazoline derivatives that could work as poten-
tial prodrugs for the 2-aminoimidazoline group. Since our lead
compounds (Chart 1) are easily accessible via their Boc-protected
precursors, obtained by reaction between primary diamines and
N,N0-bis(tert-butoxycarbonyl)imidazoline-2-thione/HgCl2/Et3N,13 we
were especially interested in a methodology using the same
commercially available aromatic amines as starting materials.
However, and contrary to N-hydroxyguanidines,14–16 only a few
procedures for the preparation of 1-hydroxy-2-aminoimidazolines
and their O-alkyl derivatives could be found, mainly in the patent
literature where no yields were reported.17–22
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2. Results and discussion

None of the methods mentioned above resulted convenient for
the preparation of our target compounds due in part to the

mailto:dardonville@iqm.csic.es
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


N NH2R1O

S

5c-8c 5d-8d

O
O NO2

S
N

NH
O

O
R1O

4572 A. Mascaraque et al. / Tetrahedron Letters 49 (2008) 4571–4574
difficulty to get the N-alkoxyethylenediamine precursors (2) easily
and in high yields. For instance, 4a was obtained satisfactorily from
2-bromoethylphthalimide/O-benzylhydroxylamine following the
reported procedure,20 but several attempts to synthesize the corre-
sponding methyl (4b) and ethyl (4c) analogues [RONH2�HCl
(2 equiv)/ DIPEA (2 equiv)/CH3CN, 80 �C, two days] resulted only
in low yields (20%) of the product together with a major dione
by-product (4d and 4e, respectively). This result is probably due
to the unstability of 4b and 4c in the basic reaction medium, result-
ing in the intramolecular nucleophilic attack of the N-alkoxyamine
at the phthalimide carbonyl group.23
N

HN

O

O

RO

4d: R = Me
4e: R = Et

N

N

O

OH
OR

N

O

O

H
N

4a: R = Bn
4b: R = Me
4c: R = Et

RO

NCS

DMF, rt

H
N

H
N

S
N
OMe

Ns

PhSH (5 eq.)
K2CO3 (10 eq.)

DMF, rt

H
N N

N

OMe
spontaneous
cyclization

5c

H
N

H
N

S
HN

OMe

9

1011

24h, rt
The fact that this rearrangement was not observed with 4a is
possibly due to steric factors with the bulkier benzyl group. The
use of a base to deprotonate the hydrochloride salt of the alkoxyl-
amine reagent in the reaction medium may also favour the
rearrangement.23

We found that protecting the secondary amine with the 2-nitro-
benzenesulfonamide (Ns) group24,25 was a very convenient way to
avoid the problem of rearrangement of 4a and 4b through intramo-
lecular cyclization. Thus, O-alkyl-N-nosyl hydroxylamines 5a–8a
were prepared easily, in good yields, by sulfonylation (NsCl/
pyridine/CH2Cl2) of hydroxylamines 5, 6, 726 and 8, respectively,
followed by acidic workup and crystallization from acetone/
hexane27 (Scheme 1).

The 2-nitrobenzenesulfonamides 5a–8a were alkylated at room
temperature with 2-bromoethylphthalimide to give high yield of
the corresponding 2-nitrobenzenesulfonamides 5b–8b as colour-
less solids.28 In most cases, the products were obtained in suffi-
cient purity (>95% by HPLC) by water-mediated precipitation
from the reaction mixture.29 The phthalimide protecting group
was removed easily by treatment with an excess of hydrazine
monohydrate in EtOH affording 5c–8c.30 The non-optimized over-
all yield for the three-step synthesis of the N-alkoxy-N-nosyl-2-
aminoethane derivatives was pretty satisfying (ca. 60%).

It should be noted that, upon storage as free base, these primary
amines tend to rearrange to cyclic secondary amines (5d–8d) via
an intramolecular process. This reaction presumably occurs either
by direct intramolecular aromatic nucleophilic substitution of the
nitro group or possibly through Smiles rearrangement followed
by an annulation process with concomitant loss of nitrous acid.31,32

This drawback can be overcome simply if the reagent is stored as
R1 NH2
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Scheme 1.
its phthalimide precursor 5b–8b and the amino group is deprotec-
ted immediately before use.
Phenylisothiocyanate was chosen as a model compound to test
this synthetic approach (Scheme 2). A screening of the reaction
conditions for the condensation of 5c with phenylisothiocyanate
showed that 1.5 equiv of amine 5c were necessary, whereas the
addition of base (DIPEA), heating of the reaction or changing the
solvent (THF, CH3CN, and toluene) did not modify significantly
the yield of the formation of 9. On the contrary, the dropwise
addition of a dilute solution of the isothiocyanate to the amine
was critical to avoid the formation of large amounts of 1,3-
diphenylthiourea by-product.

We were pleased to verify that there is no need to isolate the
thiourea intermediate in order to complete this synthetic route. In-
deed, after checking the complete formation of 9 by HPLC–MS, the
crude reaction mixture was treated with PhSH (5 equiv)/K2CO3

(10 equiv)33 following Fukayamas’ protocol.24 In this way, 9 was
converted directly to the 1-methoxy-2-phenylaminoimidazoline
product 11 via formation of the amine intermediate 10 (77% for
three steps). This new protocol was validated with the synthesis
of the target compounds 12–15 (Scheme 3) in moderate to high
yield (4234–74%).35 It should be noted that in this case, that is, syn-
thesis of symmetric bis-imidazolines, the last step required longer
reaction time (ca. three days) in order to complete the cyclization
of the amino-thiourea intermediate. Alternatively, heating the
reaction vessel at 65 �C allowed the cyclization to occur in approx-
imately 4 h.36
12: R = Bn (74%)
13: R = Me (48%)
14: R = Et (42%)
15: R= THP (56%)
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In summary, we have reported a new methodology that is very
convenient for the synthesis of 1-alkoxy-2-aminoimidazoline
derivatives starting from N-alkoxy-N-(2-aminoethyl)-2-nitroben-
zenesulfonamides that are easily obtained in high yield in three
steps from commercial hydroxylamines. This method proved prac-
tical for the one-pot synthesis of mono- and bis(1-alkoxy-2-aryl-
amino)imidazolines in good yield (42–77% total yield from the
starting isothiocyanate).
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OCH2), 3.45 (4H, br t, J 7.2), 3.25 (4H, br t, J 7.2); dC (75 MHz, CDCl3) 159.5
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(C@N), 140.3 (C), 136.3 (C), 129.6 (CH), 128.8 (CH), 128.7 (CH), 122.3 (CH), 118.2
(CH), 78.2 (OCH2), 52.7 (NCH2), 45.8 (NCH2); m/z 548.52 (M+H); HPLC: 93%;
found: C, 65.21; H, 6.38; N, 16.21.C32H33N7O2�2.3 H2O requires C, 65.18; H,
6.44; N, 16.63. Compound 13: brownish amorphous solid (174 mg, 48%); mp
103–105 �C; dH (300 MHz, CD3OD) 7.01 (4H, d, J 8.7 Hz, Ar), 6.88 (4H, d, J 8.7,
Ar), 3.67 (6H, s, OCH3), 3.32 (4H, m), 3.2 (4H, m); dC (75 MHz, CD3OD) 160.4
(C@N), 140.5 (C), 135.3 (C), 122.5 (CH), 117.9 (CH), 62.2 (CH3), 51.1 (CH2), 43.7
(CH2); m/z 396.4 (M+H); HPLC: 98%. Compound 14: brownish solid (83 mg,
42%); mp 78–82 �C; dH (300 MHz, DMSO-d6) 7.99 (1H, br s, NH), 7.34 (4H, d, J
8.7 Hz, Ar), 6.96 (4H, d, J 8.7, Ar), 3.98 (4H, q, J 7), 3.5–3.4 (8H, m), 1.23 (6H, t, J
7); dC (75 MHz, DMSO-d6) 159.1 (C@N), 139.8 (C), 133.0 (C), 122.3 (CH), 117.2
(CH), 70.4 (CH2), 52.0 (CH2), 44.5 (br, CH2), 13.8 (CH3); m/z 424 (M+H); HPLC:
97%. Compound 15: brownish amorphous solid (47 mg, 56%); mp >80 �C; dH

(300 MHz, CDCl3) 7.33 (4H, d, J 8.7 Hz, Ar), 6.94 (4H, d, J 8.7, Ar), 5.55 (1H, br s,
NH), 5.28 (2H, s, NH), 4.86 (2H, br m, OCH), 4.13 (2H, m, OCH2), 3.75–3.55 (8H,
m, NCH2CH2N + OCH2), 3.30 (2H, d, J 8.3, CH2N), 1.89–1.81 (4H, m), 1.57 (8H, br
m); dC (75 MHz, CDCl3) 159.6 (C@N), 138.6 (C), 133.6 (C), 119.8 (CH), 118.4
(CH), 104.6 (OCH), 65.8 (OCH2), 53.9 (NCH2), 49.2 (NCH2), 29.3 (CH2), 24.8 (CH2),
21.4 (CH2); m/z 536.51 (M+H); HPLC: 93%.

36. In this case, the reaction should be carefully monitored (i.e., avoid high
temperature and prolonged reaction times) to avoid the formation of
dealkylation products.
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